Analysis and Simulation of Gate Leakage Current in P3 SRAM Cell at Deep-Sub-Micron Technology for Multimedia Applications

نویسندگان

  • Manisha Pattanaik
  • Naveen Yadav
چکیده

In this paper the gate leakage current analysis of the Conventional 6T SRAM, NC-SRAM, PP SRAM, and P3 SRAM cell has been carried out. It has been observed that due to pMOS stacking and direct supply body biasing in the P3 SRAM Cell, there is a reduction of gate leakage current 66.55%, 34.42%, and 90.99% with respect to the 6T, NC-Cell, and PP cell, respectively for VDD=0.8V. For VDD=0.7V, it is found 82.2%, 75.35%, and 93.15%, respectively. The total standby leakage power in P3 SRAM Cell is found significantly reduced by 69.07%, 13.61%, and 81.01% at VDD=0.8V and 73.07%, 16.79%, and 87.94% at V DD=0.7V, with respect to the Conventional 6T SRAM Cell, NC-SRAM Cell, and PP SRAM Cell. The simulation is being performed at tox =2.4nm, VDD = 0.8V and 0.7V, Vthn=0.22V, and Vthp=0.224V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Analysis of a Novel Low-Power SRAM Bit-Cell Structure at Deep-Sub-Micron CMOS Technology for Mobile Multimedia Applications

The growing demand for high density VLSI circuits and the exponential dependency of the leakage current on the oxide thickness is becoming a major challenge in deep-submicron CMOS technology. In this work, a novel Static Random Access Memory (SRAM) Cell is proposed targeting to reduce the overall power requirements, i.e., dynamic and standby power in the existing dual-bit-line architecture. The...

متن کامل

Analysis of Gate Leakage Current in IP 3 SRAM Bit - Cell under Temperature Variations in DSM Technology

In this paper, we present the temperature based simulation and analysis of gate leakage current for the proposed low-stress IP3 SRAM bit cell. In CMOS technologies, cache memory occupies a large die area and this may experience different temperatures. Under temperature variations, performance of the system may degrade. Therefore, in the IP3 SRAM cell, gate leakage has been analyzed under temper...

متن کامل

Low-Power SRAM Cell at Deep Sub-Micron CMOS Technology for Multimedia Applications

Our life is filled by various modern electronic products. Semiconductor memories are essential parts of these products and have been growing in performance and density in accordance with Moore’s law like all silicon technology. The process technology has been scaling down from last two decades and to get the functional and high yielding design beyond 100-nm feature sizes the existing design app...

متن کامل

Characterization of a Novel Low-Power SRAM Bit-Cell Structure at Deep Sub-Micron CMOS Technology for Multimedia Applications

To meet the increasing demands for higher performance and low-power consumption in present and future Systemson-Chips (SoCs) require a large amount of on-die/embedded memory. In Deep-Sub-Micron (DSM) technology, it is coming as challenges, e.g., leakage power, performance, data retentation, and stability issues. In this work, we have proposed a novel low-stress SRAM cell, called as IP3 SRAM bit...

متن کامل

Analysis of Leakage Current Reduction Techniques in SRAM Cell in 90nm CMOS Technology

Limited energy consumption in multimedia requires very low power circuits. In this paper we focused on leakage current minimization in single static random access memory (SRAM) cell in 90nm complementary metal oxide semiconductor (CMOS) technology. The leakage current mainly consists of sub threshold leakage current and gate leakage current in 90nm CMOS technology. So minimizing the sub thresho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012